One of the essential findings of softwarephysics is that there are currently three forms of self-replicating information upon the Earth – the genes, memes, and software, with software, rapidly becoming the dominant form of self-replicating information on the planet and, indeed, within our very own Solar System too. For more on this, see A Brief History of Self-Replicating Information. In several other previous postings, we have discussed the significance of Fermi’s Paradox as it relates to the scarcity of software within our galaxy.
Fermi’s Paradox - If the Universe is just chock full of intelligent beings, why do we not see any evidence of their existence?
The corollary to Fermi’s Paradox being that, if the Universe is just chock full of intelligent beings, it should also be just chock full of software, and we should see evidence of that software because the effects of software are the easiest to observe from afar.
Basically, I have suggested two explanations for our inability to detect the presence of any intelligent beings or software within our galaxy, beyond that which is already found within our very own Solar System:
1. In SETS - The Search For Extraterrestrial Software and CyberCosmology, I suggested that the Rare Earth Hypothesis presented in the classic Rare Earth (2000) of Peter Ward and Donald Brownlee, may indicate that we are indeed the very first technological civilization to arise within our Milky Way galaxy that was capable of initiating the origin of software. With this explanation, the reason that our radio telescopes are not currently choked with tons of friendly intragalactic SPAM for the construction of alien computers, and the free downloads of alien software, is that there just are no other civilizations out there in our galaxy that have ever attained the ability to kick off the origin of software. Similarly, the reason we do not find ourselves knee-high in von Neumann probes, stuffed with alien software, is that there is nobody out there in our galaxy that ever built and launched the very first one. Calculations show that even with the very limited level of technology that is nearly within our grasp, one could easily build self-replicating von Neumann probes that could explore the entire Milky Way galaxy in as little as 5 million years, and that you could do that by only releasing a handful of these von Neumann probes upon a galaxy to get things going. Indeed, this should be so easy to do that the costs of doing so should not be a hindering factor for any technological civilization worth its salt.
2. In The Sounds of Silence the Unsettling Mystery of the Great Cosmic Stillness, I suggested a far more disturbing and sinister explanation. I proposed that the discovery of science and technology itself snuffs out all technological civilizations with an efficiency of nearly 100% before they can unleash software upon a galaxy. The problem is that when a civilization stumbles upon science and technology, the old-time meme-complexes of the past do not go away, and doing things like giving iPhones, iPads, thermonuclear weapons, missile systems, and billions of machines capable of spewing out 24 billion tons of carbon dioxide each year to very ancient political and religious meme-complexes snuffs out alien civilizations before the software they generate even has a chance to take over and begin to explore the galaxy.
Most likely, the explanation for Fermi’s Paradox stems from a combination of both factors, and possibly, a few more to boot. Personally, neither of these explanations is very appealing to me, but since I truly do love science and technology, the second is much more disturbing for me than the first. I just finished reading Alone in the Universe – Why Our Planet is Unique (2011) by one of my most favorite authors, John Gribbin. If you ever want somebody to explain really complex scientific ideas in understandable terms, you should always turn to John Gribbin. I have read many of his books in the past, and I have just put the remainder on my reading list for the future. In Alone in the Universe – Why Our Planet is Unique, John Gribbin provides some additional supporting evidence for the Rare Earth Hypothesis in addition to the evidence found in the classic Rare Earth of Peter Ward and Donald Brownlee. For example, Gribbin points out that out of the dozens of civilizations that Homo sapiens has churned out in the past 10,000 years, only one was even able to figure out that the Earth was not the center of the Universe, and then go on to develop an advanced technology. The fact that human beings were probably just as smart 200,000 years ago as they are today, and that it took a full 200,000 years for them to develop an advanced technology, does not bode well for the development of civilizations capable of developing technology and software. And even today, much of the world’s population is still scientifically illiterate. For example, many of the members of the United States Congress are clearly scientifically illiterate, and proudly so.
But the most disturbing new piece of evidence supporting the Rare Earth Hypothesis is the fact that a nearby star, Gliese 710, currently at a distance of 63.8 light years, is heading our way. In about 1.36 million years Gliese 710 will be within 1.10 light years of the Sun and will likely be able to disturb billions of very distant comets in the Sun’s Oort cloud. Some of these very distant comets will then be perturbed into orbits that carry them into the inner regions of our Solar System and on a collision course with the Earth. It is possible that the Earth will then be subjected to mass extinction collisions on a weekly basis for many millions of years that rival or even exceed the one that killed off the dinosaurs 65 million years ago in the K-T mass extinction. Essentially, the Earth will return to a period like the Late Heavy Bombardment which occurred 3.8 – 4.1 billion years ago, and which left many craters on the Moon and the Earth. Clearly, only the simplest of single-celled life forms on Earth could survive such a massive onslaught of incoming comets, and even they would have a very tough go of it. John Gribbin points out that if these incoming comets had started to arrive upon the Earth just 400 years ago, instead of 1.36 million years into the future, they would have prevented the Earth from ever having achieved a technological civilization during its entire 4.567 billion year history capable of exploring our galaxy with software. Our Sun is increasing in brightness by a factor of about 1% every 100 million years, as the amount of helium in the Sun’s core continuously increases, and consequently, increases the density and gravitational strength of the Sun’s core, since a helium nucleus has a mass equal to the mass of four hydrogen nuclei. The increasing gravitational pull of the Sun’s core requires a counteracting increase in the pressure within the Sun’s core to match the increasing gravitational pull of the core. This means that the remaining hydrogen protons within the Sun’s core must move faster at a higher temperature to increase the core’s pressure. The faster-moving hydrogen protons cause the proton-proton nuclear reaction running within the Sun’s core to run faster and release more energy at a higher rate. This increased rate of the production of energy within the Sun’s core has to go someplace, so the Sun ends up radiating more energy into space, and the poor Earth just happens to be in the way. In The Life and Death of Planet Earth (2002), Peter Ward explains that rocky planets like our Earth probably can only support complex multicellular life for about 1 billion years. Our Earth has already burned up about 600 million years of that 1 billion years of opportunity, so the odds of complex multicellular life arising once again upon the Earth after a second Late Heavy Bombardment episode are quite slim indeed, not to mention the improbability of those complex multicellular life forms going on to evolve into intelligent beings capable of developing technology and software. So the arrival of Gliese 710 in 1.36 million years may be all she wrote. It might be the technological end of the line for our Earth.
Therefore it seems that, once again, that although Brandon Carter’s Weak Anthropic Principle (1973) may guarantee that all intelligent beings will only find themselves in universes capable of sustaining intelligent beings, it does not guarantee that the universe that they find themselves in will be overly friendly to intelligent beings.
The Weak Anthropic Principle - Intelligent beings will only find themselves existing in universes capable of sustaining intelligent beings.
It seems that our Universe certainly just barely qualifies as a home for intelligent beings.
So Why is there Any Software At All?
If intelligent beings and software are indeed so very rare in our Universe, one must then ask the question why is there any software to be found at all? Perhaps the answer to that question can be found at the very end of another one of John Gribbin’s books, In search of the multiverse: parallel worlds, hidden dimensions, and the ultimate quest for the frontiers of reality (2009). The currently emerging general consensus amongst cosmologists seems to be that our Universe is just one member of an infinitely large and eternal Multiverse. This paradigm very nicely explains Brandon Carter’s Weak Anthropic Principle – it is just a selection process at work. Of the infinite number of universes in the Multiverse, only a very small fraction need to be suitable for intelligent beings and software. But since a small fraction of an infinite number is still infinite, that provides plenty of opportunities within the Multiverse for intelligent beings. So what kind of universe should an intelligent being expect to find itself in? Well, most likely an intelligent being should expect to find itself in a universe such as ours that just barely makes the grade because D- universes like ours will vastly outnumber the universes that are extremely friendly to the existence of intelligent beings. The other reason that cosmologists are leaning towards the existence of a Multiverse is that the string theorists are coming up with at least 10500 different ways to make a universe with string theory, as outlined in The Cosmic Landscape (2006) by Leonard Susskind. A Multiverse, therefore, solves many problems at both the very largest and the very smallest of scales.
At the very end of In search of the multiverse : parallel worlds, hidden dimensions, and the ultimate quest for the frontiers of reality, John Gribbin considers Lee Smolin’s theory that universes arise in the Multiverse when black holes form in a preceding universe, as outlined in Smolin’s The Life of the Cosmos (1997). In The Life of the Cosmos, Lee Smolin proposes that a kind of Darwinian natural selection occurs in the Cosmic Landscape of the Multiverse. Universes that are very good at making black holes will spawn many offspring universes, while those that are not as good at making black holes will not. Thus over an infinite amount of time, the universes that are good at making black holes will come to dominate the Cosmic Landscape. For Smolin, the intelligent beings in our Universe are just a fortuitous by-product of making black holes because, in order for a universe to make black holes, it must exist for many billions of years, and do other useful things, like easily make carbon in the cores of stars, and all of these factors aid in the formation of intelligent beings, even if those intelligent beings might be quite rare in such a universe. I have always liked Lee Smolin’s theory about black holes in one universe spawning new universes in the Multiverse, but I have always been bothered by the idea that intelligent beings are just a by-product of black hole creation because it seems a bit too coincidental. Towards the end of In search of the multiverse : parallel worlds, hidden dimensions, and the ultimate quest for the frontiers of reality, John Gribbin proposes a solution to that quandary. Perhaps intelligent beings in a preceding universe might be responsible for creating the next generation of universes in the Multiverse by attaining the ability to create black holes on a massive scale. For example, people at CERN are currently trying to create mini-black holes with the LHC collider. Currently, it is thought that there is a supermassive black hole at the center of the Milky Way Galaxy and apparently all other galaxies as well. In addition to the supermassive black holes found at the centers of galaxies, there are also numerous stellar-mass black holes that form when the most massive stars in the galaxies end their lives in supernova explosions. For example, our Milky Way galaxy contains several hundred billion stars, and about one out of every thousand of those stars is massive enough to become a black hole. Therefore, our galaxy should contain about 100 million stellar-mass black holes. Actually, the estimates run from about 10 million to a billion black holes in our galaxy, with 100 million black holes being the best order of magnitude guess. So let us presume that it took the current age of the Milky Way galaxy, about 10 billion years, to produce 100 million black holes naturally. Currently, the LHC collider at CERN can produce at least 100 million collisions per second, which is about the number of black holes that the Milky Way galaxy produced in 10 billion years. Now imagine that we could build a collider that produced 100 million black holes per second. Such a prodigious rate of black hole generation would far surpass the natural rate of black hole production of our galaxy by a factor of about 1020. Clearly, if only a single technological civilization with such technological capabilities should arise anytime during the entire history of each galaxy within a given universe, such a universe would spawn a huge number of offspring universes, compared to those universes that could not sustain intelligent beings with such capabilities. As Lee Smolin pointed out, we would then see natural selection in action again because the Multiverse would come to be dominated by universes in which it was easy for intelligent beings to make black holes with a minimum of technology. The requirements simply would be that it was very easy to produce black holes by a technological civilization, and that the universe in which these very rare technological civilizations find themselves is at least barely capable of supporting intelligent beings. It seems that these requirements describe the state of our Universe quite nicely.
This hypothesis helps to explain why our Universe seems to be such a botched job from the perspective of providing a friendly home for intelligent beings and software. All that is required for a universe to dominate the Cosmic Landscape of the Multiverse is for it to meet the bare minimum of requirements for intelligent beings to evolve, and more importantly, allow those intelligent beings to easily create black holes within them. Since software is needed in all such universes to run the machines that generate the black holes, that explains why our Universe is capable of supporting software, but just barely so, and that is why software is so rare within our galaxy and Universe.
This hypothesis also highlights our responsibilities as sentient beings in a Universe that has become self-aware. If our Universe really was created by intelligent beings in another universe within the Multiverse, these intelligent beings surely evolved from more humble origins, and probably never attained much of a higher moral standing than ourselves. That is why it is incumbent upon us as sentient beings to develop our own moral codes of conduct and then to follow them, and to not succumb to the mindless compulsions of the genes, memes and software to self-replicate at all costs, with all the associated downsides of a ruthless nature to survive.
I realize that much of this is wild speculation, but it does help to explain all of the current evidence at hand. That does not necessarily mean that it is true. However, the beauty of this explanation for the current state of the Multiverse is that it does help to heal some of the wounds between the “believers” and the “non-believers” of the modern world. As Stuart Kauffman points out in Reinventing the Sacred: A New View of Science, Reason, and Religion (2008), there is a compelling need for us to bridge this gap between the “believers” and the “non-believers” of the world. Stuart Kauffman suggests that we all can agree upon the sacredness of the emergent nonlinear Majesty of our Universe, and use this profound realization as a model for the God of our choosing. John Gribbin has another excellent book, Deep Simplicity – Bringing Order to Chaos and Complexity (2004) which describes the emergent Majesty of dissipative nonlinear systems far from equilibrium, as does At Home in the Universe (1995) by Stuart Kauffman. For more information on these topics please also see Software Chaos and The Origin of Software the Origin of Life.
Comments are welcome at scj333@sbcglobal.net
To see all posts on softwarephysics in reverse order go to:
https://softwarephysics.blogspot.com/
Regards,
Steve Johnston
Sunday, December 08, 2013
Some Additional Thoughts on the Galactic Scarcity of Software
Subscribe to:
Posts (Atom)